22.02.2024

Механизм действия гиалуроновой кислоты. Гиалуроновая кислота! Губы после гиалуроновой кислоты – фото


Первое упоминание о необычном полисахариде с высокой молекулярной массой, который выделили из стекловидного тела бычьего глаза, было сделанo в 1934 году немецкими биохимиками Karl Meyer и John Palmer. Именнo они предложили назвать новое вещество гиалуроновой кислотой. Но еще в 1918 году Levene и Lopez - Suarez выделили из стекловидного тела и пуповинной крови полисахарид, состоявший из глюкозамина, глюкуроновой кислоты и небольшого количества сульфат-иoнов. Тогда его название было мукоитин - серной кислоты, но в настоящее время установилось, что это была гиалуроновая кислота, выделенная с примесью сульфатированных гликозаминогликанов .

В течение следующих 10 лет K. Meyer и ряд других ученых выделили гиалуроновую кислоту из органов животных. В 1937 г F. Kendall выделил гиалуроновую кислоту из капсул стрептококков .

Первый опыт применения ГК в медицине относится к 1943 г., когда советский врач Николай Федорович Гамалея использовал ее в комплексных повязках для обмороженных красноармейцев в военном госпитале. Экстракт из пуповины, названный им «фактором регенерации», был утвержден Минздравом СССР в качестве препарата «Регенератор». Так же венгерский ученый Андре Балаш с 1947 исследовал вязкость ГК в зависимости от pH и ионной силы раствора, ее расщепление под действием ультрафиолета, а также изучал, как гиалуроновая кислота действует на живые клетки .

В настоящее время гиалуронан как объект исследования можно встретить в биохимии, молекулярной биофизике, биоорганической и радиационной химии. Медицинские аспекты включают изучение роли гиалуроновой кислоты в оплодотворении, эмбриогенезе, выработки иммунного ответа, в заживлении ран, онкологических и инфекционных заболеваниях, процессах старения и в решении проблем эстетической медицины. Широкий спектр практического применения гиалурoновой кислоты способствует регенерации эпителия, предотвращает образование грануляционных тканей, спаек, рубцов, снижает отечность, уменьшает кожный зуд, нормализует кровообращение, способствует рубцеванию трофических язв, предохраняет внутренние ткани глаза. Достаточно хорошо гиалурoновая кислота используется в прикладной биохимии и энзимологии в качестве субстрата для количественного определения ферментов гиалуронидазнoго действия .

Что же представляет собой гиалуроновая кислота на самом деле? Это длинная неразветвленная молекула, в которой чередуются остатки D-глюкуроновой кислоты и N-ацетилглюкозамина. Не вдаваясь в подробности, отметим, что оба эти вещества - это модифицированные молекулы глюкозы. Молекула гиалурoновой кислоты может содержать более 30 000 остатков каждого из этих веществ. Кроме того, в организме эта цепочка всегда связана с некоторым количеством белка. Интересно, что подобная структура универсальна и встречается у самых разных представителей животного мира и даже у некоторых бактерий. Гиалуроновая кислота относится к классу гликозаминогликанов .

Рисунок 1. Структура гиалуроновой кислоты

Ранее использовались методы получения гиалурoновой кислоты из стекловидного тела глаза коровы и гребешка петуха. Недостатками данных методов производства являлись их дороговизна и наличие примесей белка в конечном продукте, что приводило к большому количеству аллергических реакций на препарат.

Современное производство ГК основано на процессе ферментации с использованием бактерий (Streptococcus equi и Streptococcus zooepidemicus). ГК, полученная таким путем, имеет более высокую степень очистки, чем и объясняется лучшая переносимость ГК пациентами. Биотехнология получения гиалуронана из бактериальных штаммов продуцентов включает культивирование их в подбираемых условиях, при которых на стадии логарифмического роста на поверхности бактериальных клеток формируется капсула из полисахарида, а на стационарной стадии роста ГК может секретироваться в культурaльную жидкость, капсула истончается или полностью исчезает .

ГК чувствительна к кислотно-щелочному гидролизу. Даже слабое подкисление раствора ГК уксусной кислотой приводит к необратимому снижению вязкости в 2,5 раза. Минеральными кислотами ГК полностью гидрoлизуется до глюкурoновой кислоты, глюкoзамина, уксусной кислоты и двуокиси углерода. Разбавленная серная кислота за короткое время гидрoлизует кислоту с образованием кристаллов дисахаридов.

Окислительно-восстановительная деполимеризация гиалурoнана. Деструкция полисахаридной макромолекулы под действием окслительно-восстановительных сред протекает по свободнoрадикальному механизму. Свободные радикалы образуются с участием аскорбиновой кислоты, гиалуронана и кислорода. Доказано, что гиалурoновая кислота депoлимеризуется под действием ионов железа в присутствии аскорбиновой кислоты. Следовательно ГК, выделенная в атмосфере азота или аргона, имеет более высокую степень полимернoсти по сравнению с выделенной на воздухе .

Для медицинского применения необходима стерилизация растворов гиалуронана. Ее осуществляют автоклавированием при температуре 120-130ºС или ионизирующим гамма-излучением. В обоих случаях происходит значительная деполимеризация биополимера и потеря его исходной терапевтической активности. Известны способы защиты растворов гиалуронана от деполимеризации, основанные на добавлении к растворам различных аминокислот, борной кислоты и глицерина, сульфата гидрохинолина, мочевой кислоты, фенольных соединений (пирогаллол) .

Характерные свойства гиалуроновой кислоты – ее выраженная биологическая активность, прекрасная биосовместимость, отсутствие антигенности, раздражающего и других побочных эффектов – обратили на себя внимание ученых. Благодаря своим уникальным физико-химическим свойствам ГК нашла применение в различных областях медицины, косметологии и ветеринарии. Тот факт, что ГК входит в состав многих тканей (кожа, хрящи, стекловидное тело) и является органоспецифичной и видонеспецифичной, обуславливает ее применение в лечении заболеваний, связанных с этими тканями .

Биологические функции гиалуроновой кислоты можно разделить на «пассивные» и «активные». Как инертный материал, ГК участвует в гомеостазе тканей, в стерическом регулировании (осмосе) проникновения каких-либо субстанций, выполняет роль «смазки», улучшающей подвижность суставов и т.д. «Активные» функции ГК заключаются в специфическом связывании с белками в межклеточном матриксе и на поверхности клетки. Такое взаимодействие играет важную роль в образовании хрящевой ткани, в процессах клеточной пролиферации, в морфогенезе и эмбриональном развитии животных, а также в механизмах воспаления и возникновения рака .

Гиалуроновая кислота используется в онкологии как лечебное средство. Механизмы действия ГК на опухолевые клетки разнообразно. На молекулярном уровне механизм заключается в том, что высокомолекулярная ГК, связываясь с рецепторами на клеточной мембране опухолевых клеток, замедляет их миграцию и образование метастазов. Второй механизм действия состоит в том, что введение высокомолекулярной ГК способствует формированию соединительнотканной капсулы вокруг опухоли. Третий механизм связан со свойством высокомолекулярной фракции тормозить васкуляризацию опухоли (прорастание кровеносных сосудов в опухоль) и тем самым приводить к замедлению роста и метастазированию опухолей, а низкомолекулярной, наоборот, индуцировать .

Гиалуроновая кислота довольно хорошо проявила себя в заживлении ожоговых ран, язв, рубцов и послеоперационных вмешательств. Ученые выяснили, что она не имеет раздражающего действия, а даже наоборот вызывает противовоспалительный эффект, способствует быстрой регенерации ткани. Биоэксплантат (пленка) на основе окисленной ГК в эксперименте показал ускоренное заживление швов кишечных анастомозов повышенного риска.

ГК используют при приготовлении фармацевтических композиций в качестве загустителей, смазывающих веществ, агентов для пленочных покрытий, устойчивых к желудочному соку, в частности при получении капсул, гелей, коллоидов и различных устройств (например, контактных линз, предметов из марли и т.д.). Вероятно, в основе механизма накопления в соединительно-тканных структурах ряда лекарственных веществ и антибиотиков лежит связывание их с протеогликанами тканей. То же можно утверждать и о механизмах отложения в тканях, особенно в матриксе соединительной ткани, различных патологических продуктов. В норме в первые сутки заживления ран в них отмечается повышение концентрации ГК, которая связываясь с фибриновой сетью, образует переходный матрикс, стимулирующий активацию и миграцию гранулоцитов, макрофагов и фибробластов, пролиферацию эпителиальных клеток. Кроме того, ГК посредством усиления фагоцитоза способствует более полному очищению раны от некротических элементов. Вследствие усиления активности макрофагов увеличивается образование трофического фактора, который привлекает фибробласты и эндотелиальные клетки в пораженную область .

Содержание гиалуронана в коже человека не постоянная величина. Существуют незначительные сезонные колебания ГК в дерме: летом уровень гиалуронана несколько ниже, чем в зимний период. Это связывают с повышенной скоростью деградации ГК под действием УФ-излучения. Наиболее значимо возрастное уменьшение концентрации ГК. Начиная с 60-летнего возраста происходит кратное снижение концентрации ГК в дерме. Поэтому инъекционное внутриклеточное введение нативной ГК представляется вполне естественным способом воспаления ее дефицита. Данный инъекционный метод в эстетической медицине получил название биоревитализации .

В научной литературе можно встретить обширную информацию о химической структуре, макромолекулярной характеристики, биологических свойствах и медицинском применения гиалуроновой кислоты.

ГК входит в состав основного межклеточного вещества соединительной, эпителиальной и нервной тканей, в большом количестве присутствует в стекловидном теле глаза, синовиальной жидкости суставов, коже, стенках артерий и вен, сердечных клапанах, в глoмерулярной базальной мембране почек.

С момента открытия гиалурoновой кислоты произошла значительная эволюция взглядов. Если вначале считали, что данный полисахарид служит пассивным структурным компонентом межклеточного матрикса, то к настоящему времени он включен во многие биологические процессы: от размножения, миграции, дифференцировки клеток в процессе эмбриогенеза до регуляции процессов воспаления и заживления ран, метастазирования раковых клеток. В организме ГК выполняет множественные физиологические функции: служит основой функционирования системы организма, определяет проницаемость тканей и сосудов кровеносной системы, стойкость к проникновению инфекций . Но с возрастом все функции замедляются.

Такое широкое разнообразие биологических свойств гиaлуроновой кислоты обусловлено функцией молекулярной массы, которая играет значительную роль в поведении клеток, полиморфизмом структурных форм и физико-химическими свойствами молекул разной молекулярной массы, зависящими от ионного окружения и концентрации биополимера в тканях и органах .

Подводя итог, можно сказать, что гиалуроновая кислота нашла свое применение во многих отраслях медицины. Ее применяют в косметологических инъекциях (биоревитализация), входит в состав различных косметических средств. Следует отметить, что ГК может иметь и негативные последствия в частых инъекциях под кожу. Чтобы поддержать свою кожу в тонусе нужно вести здоровый образ жизни, правильно питаться и не злоупотреблять вредными привычками. Так же офтальмологи применяют ее в качестве лечения катаракты, синдрома «сухого глаза». В иммунологии применяют для комплексного лечения иммунодефицитных состояний при вирусных инфекциях. Так же можно использовать для лечения язвенных болезней желудка, двенадцатиперстной кишки, с помощью активации трипсина.

Список литературы

  1. Егоров Е.А. Гиалуроновая кислота: применение в офтальмнологии и терапии синдрома «сухого глаза» // РМЖ. Клиническая офтальмология. – 2013. – Том 13, №2. С. – 72.
  2. Сигаева Н.Н., Колесов С.В., Назаров П.В., Вильданова Р.Р. Химическая модификация гиалуроновой кислоты и ее применение в медицине // Вестник Башкирского университета. – 2012. – Т.17. №3. С. – 1221 – 1222.
  3. Стрельникова Л.Н., Клещенко Е.В., Астрин А.В. Химия и жизнь // Ежемесячный научно – популяционный журнал. – 1.12.2010. №12. С. – 22 – 23.
  4. Хабаров В.Н., Бойков П.Я., Селянин М.А. Гиалуроновая кислота: получение, свойства, применение в биологии и медицине. – М.: Практическая медицина, 2012. – 224с.:ил. С. – 9 – 11, 19 – 30, 218.

Гиалуроновая кислота [ГК] найдена во внеклеточном матриксе позвоночных тканей, в поверхностном покрытии определенных видов Streptococcus и болезнетворных бактериальных микроорганизмов Pasteurella, а также на поверхности некоторых частично пораженных вирусом морских водорослей. Синтазы гиалуроновой кислоты [ГКС], это ферменты, которые полимеризуют ГК, используя UDP-сахарные предшественники, которые найдены во внешних мембранах этих организмов. Были идентифицированы гены ГКС из всех вышеупомянутых источников. Кажется, существуют два отличных класса ГКС, что основано на различиях в аминокислотной последовательности, предсказанной топологии в мембране и предполагаемом механизме реакции.

Все ГКС были определены как синтазы класса I, за исключением ГКС у вида Pasteurella. Был также объяснен каталитический способ работы единственной ГКС класса II (пмГКС). Этот фермент удлиняет внешние ГК-присоединяемые олигосахаридные акцепторы путем добавления индивидуальных моносахаридных единиц к неуменьшающемуся концу, чтобы сформировать длинные полимеры in vitro; ни одна ГКС класса I не имеет такой способности. Способ и направление полимеризации ГК, катализируемой ГКС класса I, остаются неясными. Фермент пмГКС также был проанализирован на предмет двух имеющихся у него активностей: GlcUA-трансферазной и GlcNAc-трансферазной. Таким образом, два активных участка существуют в одном пмГКС полипептиде, опровергая широко принятую догму гликобиологи: "один фермент - один модифицированный сахар". Предварительные свидетельства позволяют предполагать, что у ферментов класса I может также быть два участка активности.

Каталитический потенциал фермента пмГКС может использоваться, чтобы создать новые полисахариды или проектировать олигосахариды. Из-за множества потенциальных ГК-базирующихся медицинских методов лечения, эта хемоэнзиматическая технология обещает принести пользу на пути нашего стремления к хорошему здоровью.

Ключевые слова

Гиалуроновая кислота (ГК), хондроитин, гликозилтрансфераза, синтаза, катализ, механизм, химерные полисахариды, монодисперсные олигосахариды

Введение

Гиалуронан [ГК] - очень богатый глюкозаминогликан в организме позвоночных, имеющий и структурную, и сигнальную роли. Определенные патогенные бактерии, а именно, группы А и С вида Streptococcus и тип А Pasteurella multocida, производят внеклеточный покрывающий ГК, называемый капсулой. У обоих видов ГК капсула и является фактором ядовитости, который обеспечивает бактериям сопротивляемость фагоцитам и комплементарность. Другой организм, производящий ГК - это морская водоросля хлорелла, инфицированная определенным большим двухцепочечным ДНКовым вирусом PBCV-1. Роль ГК в жизненном цикле этого вируса пока не ясна на данный момент.

Иллюстрация 1. Реакция биосинтеза ГК.

Ферменты класса гликозилтрансфераз, которые полимеризируют ГК, называются ГК-синтазами (или ГКС), по старой терминологии, включающей также ГК-синтетазы. Все известные ГК-синтазы - это разновидности одного полипептида, ответственные за полимеризацию цепи ГК. UDP-сахарные предшественники, UDP-GlcNAc и UDP-GlcUA используются ГК-синтазами в присутствии двухвалентного катиона (Mn и/или Mg) при нейтральном pH (рис. 1). Все синтазы являются мембранносвязанными белками в живой клетке и обнаружены в мембранной фракции после лизиса клеток.

Между 1993 - 1998 были идентифицированы и клонированы на молекулярном уровне ГК-синтазы групп A и С Streptococcus [спГКС и сеГКС соответственно], ГК-синтазы позвоночных животных [ГКС 1,2,3], ГК-синтаза водорослевого вируса [свГКС], а также ГК-синтаза типа A вида Pasteurella multocida [пмГКС]. Первые три типа ГК-синтаз, кажется, очень похожи в размере, аминокислотной последовательности и предсказанной топологии в мембране. ГК-синтаза вида Pasteurella, напротив, больше и обладает существенно отличающейся от других синтаз последовательностью и предсказанной топологией. Поэтому, мы предположили существование двух классов ГК-синтаз (таблица 1). Ферменты класса I включают стрептококковые, позвоночные и вирусные белки, в то время как белок вида Pasteurella в настоящее время единственный член класса II. У нас также есть некоторые свидетельства того, что каталитические процессы ферментов класса I и класса II отличаются.

Таблица 1. Два класса ГК-синтаз:

Хотя ГК-синтаза вида Pasteurella был последним обнаруженным ферментом из всех, некоторые особенности пмГКС способствовали существенному продвижению в его изучении в сравнении с некоторыми членами ферментов класса I, которые исследовались четыре десятилетия. Ключевая особенностью пмГКС, которая позволила разъяснить молекулярное направление полимеризации и идентификацию ее двух активных участков - это способность пмГКС удлиннять внешне расположенный акцепторный олигосахарид. Рекомбинантная пмГКС добавляет одиночные моносахариды повторным способом к ГК-ассоциированному олигосахариду in vitro. Внутренняя особенность каждой передачи моносахарида ответственна для того, чтобы формировать альтернативное повторение дисахаридов в этом глюкозаминогликане; одновременное формирование дисахаридной единицы не требуется. С другой стороны, никакое подобное удлиннение внешних акцепторов не было доказано ни для какого фермента класса I. Через фундаментальное научное исследование мы теперь развили некоторые биотехнологические применения замечательного белка класса ГК-синтаз вида Pasteurella.

Материалы & методы

Реагенты

Все реактивы для молекулярнобиологических исследований без специальной пометки были от Promega. Стандартные олигонуклеотиды были от Great American Gene Company. Все другие реактивы высокой чистоты, если иначе не отмечено, были от Sigma или от Fisher.

Усечение пмГКС и точечные мутанты

Был произведен ряд усеченных полипептидов, путем амплификации pPm7А вставки методом полимеразной цепной реакцией с Taq-полимеразой (Fisher) и синтетическими олигонуклеотидными праймерами, соответствующими различным частям пмГКС, с открытой рамкой считывания. Ампликоны затем были клонированы в плазмиду для экспрессии pKK223-3 (tac промотор, Pharmacia). Получившимися рекомбинантными конструкциями были трансформированы клетки Escherichia coli штамма TOP 10F" (Invitrogen) и выращены на среде LB (Luria-Bertani) с ампициллиновой селекцией. Мутации были сделаны, используя метод QuickChange сайт-направленного мутагенеза (Stratagene) с плазмидой pKK/пмГКС как ДНК шаблон.

Приготовление фермента

Для приготовления мембраны, содержащей рекомбинантный пмГКС полной длины, пмГК1-972 был изолирован из E.coli, как описано. Для растворимых усеченных пмГКС белков, пмГКС1-703, пмГКС1-650 и пмГКС1-703 - содержащих мутантов, клетки были извлечены с помощью В-PerТМ II Bacterial Protein Extraction Reagent (Pieree) согласно инструкции производителя, за исключением того, что процедура была выполнена при 7°C в присутствии ингибиторов протеаз.

Ферментные пути полимеризации ГК. GlcNAc модификация или GlcUA модификация

Три варианта было разработано, чтобы обнаружить происходит ли (а) полимеризация длинных цепей ГК или (b) добавление одиночного GlcNAc к GlcUA-конечному акцепторному олигосахариду ГК , или (c) добавление одиночного GlcUA к GlcNAc-конечному акцепторному олигосахариду ГК . Полная активность ГКС была оценена для раствора, содержащего 50 mM Tris, pH 7.2, 20 mM MnCl2, 0.1 M (NH4)2SO4, 1 M этиленгликоля, 0.12 mM UDP-(14C)GlcUA (0.01 μCi; NEN), 0.3 mM UDP-GlcNAc и различный набор ГК олигосахаридов, полученный из тестикул путем обработки гиалуронидазой [(GlcNAc-GlcUA)n, n= 4-10] при 30°C в течение 25 минут в объеме реакционной смеси 50 мкл. GlcNAc-трансферазная активность была оценена в течение 4 минут в той же буферной системе с различным набором ГК олигосахаридов, но только с одним сахаром в роли предшественника - 0.3 mM UDP-(3H)GlcUA (0.2 μCi; NEN). GlcUA-трансферазная активность была оценена в течение 4 минут в той же самой буферной системе, но только с 0.12 mM UDP-(14C)GlcUA (0.02 μCi) и с нечетным набором ГК олигосахаридов (3.5 мкг уроновой кислоты), приготовленных при помощи воздействия ацетата ртути на ГК-лиазу Streptomyces. Реакции были прекращены путем добавления SDS до 2% (w/v). Продукты реакции были отделены от субстратов путем бумажной (Whatman 3M) хроматографии с этанолом/1 М сульфат аммония, pH 5 5, как основной растворитель (65:35 для ГКС и оценки GlcUA-Tase; 75:25 для оценки GlcNAc-Tase). Для оценки ГКС образец бумажной полосы был промыт водой, и объединение радиоактивных сахаров в полимер ГК было обнаружено по сцинтилляции жидкости, рассчитанной при помощи BioSafe II коктейля (RPI). Для реакций полуиспытания образец и расположенные вниз по течению 6 см полосы были посчитаны по частям в 2 см. Все оценочные эксперименты были просчитаны таким образом, чтобы быть линейными относительно времени инкубации и концентрации белка.

Гель-фильтрационная хроматография

Размер ГК полимеров был проанализирован хроматографически на колонках Phenomenex PolySep-GFC-P 3000, элюция производилась 0.2 M нитратом натрия. Колонка была стандартизована флуоресцентными декстранами различного размера. Радиоактивные компоненты были обнаружены с помощью датчика LB508 Radioflow (EG & G Berthold) и коктейля Zinsser. По сравнению с полной оценкой ГКС, используя бумажную хроматографию, описанную выше, эти 3-минутные реакции содержали дважды UDP-сахарные концентрации, 0.06 μCi UDP-(14C)GlcUA и 0.25 нанограмма ряда ГК олигосахаридов. Кроме того, использовалось добавление кипящего (2 минуты) этилендиамина тетрациловой кислоты (финальная концентрация 22 mM), чтобы закончить реакции вместо добавления SDS.

Результаты и обсуждение

Утилизация и специфичность акцептора ГКС

Некоторые олигосахариды были проверены, в качестве акцепторов для рекомбинантного пмГКС1-972(Таблица 2). ГК олигосахариды были получены из тестикул путем гиалуронидазного щепления, а удлиннены пмГКС с помощью доставляемых подходящих UDP-сахаров. Восстановление борогидратом натрия не нарушает активность акцептора. С другой стороны, олигосахариды, полученные из ГК при помощи отщепления лиазой, не поддерживают удлиннение; дегидратированные ненасыщенные невосстановленные концевые остатки GlcUA нуждаются в гидроксильных группах, которые смогли бы присоединить входящий сахар из UDP-предшественника. Поэтому пмГКС-катализируемое удлиннение происходит в случае невосстановленных концевых групп. В ряде параллельных экспериментов было обнаружены рекомбинантные формы синтаз класса I - спГКС и х1ГКС, которые не удлинняют ГК-получаемые акцепторы. Принимая во внимание направление активности ферментов класса I, противоречивые сообщения были сделаны и необходимы дальнейшие исследования.

Таблица 2. Специфика олигосахаридных акцепторо пмГКС:

Интересно, что хондроитин сульфат пентамер является хорошим акцептором для пмГКС. Другие структурно связанные олигосахариды такие, как хитотетроза или хепарозан пентамер, однако, не служат акцепторами для пмГКС. В целом, пмГКС, кажется, требует, β-связанных GlcUA-содержащих акцепторных олигосахаридов. Мы выдвигаем гипотезу, что участок связывания олигосахаридов промежуточен в цепи удерживания ГК во время полимеризации.

Молекулярный анализ активности пмГКС трансферазы: два активных участка в одном полипептиде

Возможность измерить два компонента гликозилтрансферазной активности ГК синтазы, GlcNAc-трансфераза и GlcUA-трансфераза, позволил молекулярный анализ пмГКС. Мы отметили, что короткий дублированный мотив последовательности: Asp-Gly-Ser (Аспарагиновая к-та-Глицин-Серин), присутствовал в пмГКС. Из анализа сравнения гидрофобных групп многих других гликозилтрансфераз, которые производят β-связанные полисахариды или олигосахариды предположили, что вообще, существует два типа доменов: области "A" и "Б". ПмГКС, синтаза класса II, тем и уникальна, что содержит два "А" домена (личная коммуникация, B.Henrissat). Было предложено, что определенные члены класса I ГК синтаз (спГКС) содержат одиночные "А" и одиночные "Б" области. Различное удаление или точечные мутанты пмГКС были оценены для их способности полимеризовать ГК цепи или их способность добавлять одиночный сахар к ГК акцепторному олигосахариду (Таблица 3). Суммируя сказанное, пмГКС содержит два отличных друг от друга активных участка. Мутагенез аспартата мотива DGS (остаток 196 или 477) по обоим сайтам приводи к потере ГК полимеризации, но активность другого сайта оставалась относительно незатронутой. Таким образом, двойная активность ГК синтазы была преобразована в два различных одиночных действия гликозилтрансферазы.

Таблица 3. Активность пмГКС с удаленным участком или точечной мутацией.

Удаление последних 269 остатков от конечной карбоксильной группы преобразовало слабо выраженный мембранный белок в хорошо выраженный растворимый. Рассмотрение аминокислотной последовательности белка пмГКС в этой области, однако, не показывает типичных особенностей вторичной структуры, которые обеспечили бы прямое взаимодействие фермента с двойным слоем липида. Мы выдвигаем гипотезу, что конечная карбоксильная группа каталитического фермента пмГКС стыкуется с направляющим мембраносвязанным полисахарида транспортного аппарата живущей бактериальной клетки.

Первая "A" область пмГКС, А1, является GlcNAc-тазой, в то время как вторая "A" область, A2, является GlcUA-тазой (рис. 2). Это - первая идентификация двух активных участков для фермента, который производит гетерополисахарид, так же как ясное доказательство, что один фермент может действительно передать два различных сахара. Отличный от типа F фермент вида P. multocida, названный пмЦС, был найден, и вяснено, что он катализирует формирование несульфатируемого полимера хондроитина. ГК и хондроитин идентичны в структуре, за исключением упомянутого выше полимера, который содержит N-ацетилглюкозамин вместо GlcNAc. И пмГКС, и пмЦС на 87 % идентичны на уровне аминокислот. Большинство изменений в остатках находятся в области А1, что вполне совместимо с гипотезой о том, что эта область ответственна за передачу гексозамина.

Иллюстрация 2. Схематическое изображение пмГКС областей.
Два независимых трансферазных домена, А1 и A2, ответственны за катализ полимеризации цепи ГК. Повторяющиеся последовательные добавления одиночных сахаров быстро строят цепь ГК. Похоже, что карбоксильный конец пмГКС некоторым способом взаимодействует с мембранносвязанным транспортным аппаратом бактериальной клетки.

Иллюстрация 3. Модель биосинтеза ГК при помощи пмГКС.
Одиночные сахара добавляются к каждому "A" домену повторным способом к невосстанавливающемуся концу цепи ГК. Внутренняя точность каждой стадии активности трансферазы поддерживает повторение структуры дисахаридов ГК. Возникающая цепь ГК вероятно сохраняется пмГКС во время катализа через олигосахарид-связывающий участок.

Мы продемонстрировали эффективную передачу одиночного сахара с помощью пмГКС in vitro несколькими типами экспериментов, поэтому, мы выдвинули гипотезу, что цепи ГК формируются быстрым, повторяющимся добавлением одиночного сахара синтазой класса II (рис. 3). К настоящему времени, одна линия свидетельства предполагает, что фермент класса I также обладает двумя участками трансферазы. Мутация лейцинового остатка 314 на валин в ммГКС1, в части предварительного участка GlcUA-тазы, как сообщали, преобразовала эту ГКС позвоночного животного в хито-олигосахаридную синтазу. Ни один участок с соответствующей активностью GlcNAc-трансферазы не был идентифицирован.

Прививание полимера полисахаридными синтазами: добавление ГК к молекулам или твердым частицам

Исследование пмГКС в научно-исследовательской лаборатории преобразовало представления о ГК синтазах от царства трудных, упорных животноподобных чудовищ до потенциальных биотехнологических рабочих лошадок. Новые молекулы могут быть сформированы, используя способность пмГКС привить длинные цепи ГК на коротких ГК полученных цепях или хондроитин-производных акцепторах. Например, полезные акцепторы могут состоять из маленьких молекул или лекарств с ковалентно связанной ГК или хондроитин-олигосахаридные цепи (длиной в 4 сахара, например). В другом случае, цепи ГК могут быть добавлены к олигосахаридному праймеру, иммобилизованному на твердой поверхности (таблица 4). Таким образом, длинные цепи ГК могут быть мягко добавлены к чувствительным веществам или тонким устройствам.

В другом приложении, новые химерные полисахариды могут быть сформированы потому, что использование пмГКС олигосахаридным акцептором не столь же строго, как сахаридная трансферазная специфика. Хондроитин и хондроитин-сульфат признаны как акцепторы пмГКС и удлинняются ГК цепью различных длин (рис. 4). Наоборот, пмЦС очень гомлогичная хондроитин синтазе, распознает и удлинняет ГК акцепторы цепями хондроитина. Химерные молекулы глюкозаминогликана сформированы, содержа естественные, определенного соединения связи. Эти привитые полисахариды могут служить, чтобы присоединиться к клетке или ткани, которая связывает ГК с другой клеткой или ткань, связывающей хондроитин или хондроитин-сульфат. В определенных аспектах, привитые глюкозаминогликаны напоминают протеогликаны, которые являются существенными компонентами матрикса в тканях позвоночных. Но так как никакие компоновщики белка не присутствуют в химерных полимерах, то антигенность и проблемы протеолизиса, возникающие вокруг медицинского использования протеогликанов, устранены. Риск передачи инфекционных агентов тканями, извлеченными из животных, человеческому пациенту также уменьшен при использовании химерных полимеров.

Таблица 4. ПмГКС-инициированное прививание ГК на бусинки полиакриламида. Реакционная смесь содержит пмГКС, несущий радиоактивную метку UDP-(14C)GlcUA и UDP-(3H)GlcNAc, а также различные иммобилизованные праймеры сахаров (акцепторы, соединенные восстановительным аминированием в аминобусины) были представлены. Бусинки были промыты и радиоактивно инкорпорированы на другие бусины, измеренные методом расчета жидкостной сцинтилляции. ГК цепи были привиты на пластиковые бусины при использовании подходящего праймера и пмГКС.

Иллюстрация 4. Схематическое изображение привитых полисахаридных структур. ГК синтаза вида Pasteurella или хондроитин синтаза будут удлиннять определенные другие полимеры на невосстанавливающемся конце in vitro, чтобы сформировать новые химерные глюкозаминогликаны. Изображены некоторые примеры.

Синтез монодисперсной ГК и ГК-связанных олигосахаридов

В дополнение к добавлению большой полимерной ГК цепи к молекулам акцептора, пмГКС синтезируют определенные меньшие ГК олигосахариды в диапазоне от 5 до 24 сахаров. Используя фермент дикого типа и различные условия реакции, был относительно легко получен ГК олигосахарид, содержащий 4 или 5 моноахаридов, удлиненных несколькими сахарами до более длинных версий, которые очень часто трудно получить в больших количествах. Мы выяснили, что, комбинируя растворимый мутант GlcUA-Tase и растворимый мутант GlcNAc-Tase в той же самой смеси реакции позволяет формирование ГК полимера, если система снабжена акцептором. В течение 3-х минут была сделана цепь из примерно 150 сахаров (-30 кДа). Любая одиночная мутант-синтаза не сформирует в результате цепь ГК. Поэтому, если дальнейший контроль реакции сделан путем выборочного комбинирования различных ферментов, UDP-сахаров и акцепторов, то могут быть получены определенные монодисперсные олигосахариды (рис. 5).

Иллюстрация 5. Приготовление определенных олигосахаридов.
В этом примере, акцептор ГК тетрасахарид удлинняется одиночной хондроитин дисахаридной единицей, используя два шага с иммобилизованным мутантом синтазы вида Pasteurella (показано белыми стрелками). Изображенный продукт является новым гексасахаридом. Повторение цикла еще раз производит олигосахарид, два цикла формируют декасахарид, и т.д. Если акцептор был ранее соединен с другой молекулой (например препарат или лекарство), тогда новый конъюгат был бы удлиннен коротким ГК, хондроитином или гибридной цепью как и желательно.

Например, в одном воплощении, смесь UDP-GlcNAc, UDP-GlcUA и акцептора постоянно циркулирует через отдельные биореакторы с иммобилизованными мутант-синтазами, которые передают только одиночный сахар. С каждым циклом инкубации биореактора другая сахарная группа добавляется к акцептору, чтобы сформировать маленькие определенные ГК олигосахариды. Использование похожего пмЦС мутанта (например GalNAc-Tase) в одном из шагов позволило происходить формированию смешанных олигосахаридов при использовании UDP-GlcNAc. Биологическая активность и терапевтический потенциал маленьких ГК олигосахаридов - сложная область для исследования, которая потребует определенных, монодисперсных сахаров для однозначной интерпретации.

Заключение

Очевидно, существуют два различных класса ГК синтаз. Наиболее хорошо охарактеризован фермент класса II вида Рasteurella, удлинняющий цепь ГК повторяющимся присоединением одиночного сахара на невосстанавливающийся конец цепи ГК. Направление и способ работы синтаз класса I (стрептококковые, вирусные и ферменты позвоночных) остаются неясными. Относительно прикладных наук, способность пмГКС удлиннять экзогенно расположенные акцепторные молекулы полезна для создания новых молекул и/или устройств с потенциальным медицинским применением.

Гиалуронан представляет собой гликозаминогликан, который образует во внеклеточном матриксе огромные комплексы с протеогликанами. Особенно в большом количестве эти комплексы присутствуют в хрящевой ткани, где гиалуронан посредством линкерного белка связывается с протеогликаном агреканом

Гиалуронан несет сильный отрицательный заряд и поэтому во внеклеточном пространстве связывается с катионами и с молекулами воды. Это приводит к увеличению жесткости внеклеточного матрикса и создает между клетками водяную подушку, которая гасит силы сжатия

Гиалуронан состоит из повторяющихся единиц дисахаридов, связанных в длинные цепи

В отличие от других гликозаминогликанов, гиалуронановые цепи синтезируются на цитозольной поверхности плазматической мембраны и затем выходят из клетки

Клетки связываются с гиалуронанами с участием семейства рецепторов, известных под названием гиаладгерины, которые инициируют сигнальные процессы, контролирующие миграцию клеток и сборку цитоскелета

Гиалуронан (ГК), также известный под названием гиалуроновая кислота или гиалуронат, представляет собой глюкозаминогликан (ГАГ). В отличие от других гликозаминогликанов (ГАГ), связанных с внеклеточном матриксом, гиалуронан не связан ковалентной связью с протеогликанами сердцевинных белков, а образует очень большие комплексы с секретируемыми протеогликанами.

К числу таких наиболее важных комплексов относятся комплексы, присутствующие в хрящевой ткани, где молекулы ГК , секретируемые хондроцитами (хрящеобразующие клетки), связываются примерно со 100 копиями протеоглика-на агрекана. Агрекановые сердцевинные белки через небольшой линкерный белок связываются с одной молекулой ГК через 40-нм интервалы. Такие комплексы в длину могут достигать более 4 мм и обладать мол массой, превышающей 2 х 108 дальтон. Таким образом, с участием ГК во внеклеточном матриксе хрящевой ткани создаются большие гидратированные пространства.

Эти пространства играют особенно важную роль в тканях с низкой плотностью кровеносных сосудов, поскольку они обеспечивают диффузию питательных компонентов и выведение продуктов обмена из внеклеточного пространства.

Гиалуроновая кислота (ГК) обладают очень простой структурой. Подобно всем ГАГ, они являются линейными полимерами одного из дисахаридов, глюкуроновой кислоты, связанной с N-ацетилглюкозамином посредством (3 (1-3) связи. Как показано на рисунке ниже, молекулы ГК содержат в среднем 10 000 (и до 50 000 этих дисахаридов, связанных b(1-4) связью. Поскольку дисахариды несут отрицательный заряд, они связывают катионы и молекулы воды.

Подобно протеогликанам , ГК увеличивают жесткость внеклеточного матрикса и служат в качестве смазки в таких соединительнотканных структурах, как . Гидратированные молекулы ГК также образуют между клетками водяную подушку, которая позволяет тканям гасить силы сжатия.

CD44 образует гомодимеры или гетеродимеры с рецепторами Erb2.
Эти комплексы связываются с рядом сигнальных молекул,
которые контролируют организацию цитоскелета и экспрессию генов.

Молекулы гиалуроновой кислоты (ГК) гораздо крупнее, чем другие ГАГ. Из-за этого клетки должны расходовать на их формирование большие количества энергии. Подсчитано, что для формирования одной среднего размера цепи ГК, необходимо 50 000 эквивалентов АТФ, 20 000 кофакторов НАД и 10 000 групп ацетил-КоА. Поэтому в большинстве клеток синтез ГК находится под жестким контролем.

Синтез гиалуроновой кислоты (ГК) катализируется трансмембранными ферментами, ГК синтазами, локализованными в плазматической мембране. Эти ферменты несколько необычны в том смысле, что они собирают полимер ГК на цитозольной стороне плазматической мембраны, а затем переносят его через мембрану во внеклеточное пространство. Это принципиально отличается от синтеза других ГАГ, которые образуются в аппарате Гольджи и ковалентно связываются с протеогликанами сердцевинных белков по мере их прохождения по секреторному пути.

Важнейшим способом регуляции синтеза гиалуроновой кислоты (ГК) является изменение экспрессии ферментов, ГК синтаз. Экспрессия этих ферментов индуцируется специфичными для клеток факторами роста. Например, фактор роста фибробластов и интерлейкин-1 являются индукторами экспрессии ферментов в фибробластах, в то время как глюкокортикоиды подавляют экспрессию в этих же клетках. Эпидермальный фактор роста стимулирует экспрессию в кератиноцитах, но не в фибробластах. Секреция ГК контролируется независимо от их синтеза, и это обеспечивает, по крайней мере, два способа контроля уровня ГК в тканях.

Наряду с участием в гидратации тканей, гиалуроновая кислота (ГК) связывается со специфическими поверхностными рецепторами, что приводит к стимуляции внутриклеточных сигнальных путей, контролирующих такие процессы, как миграция клеток. Основным рецептором ГК является CD44, относящийся к семейству белков, называемых гиладгеринами, которые связываются с ГК. К остальным представителям этого семейства относятся протеогликаны (например, версикан, агрекан, бревикан) и линкерный белок, который связывает ГК с агреканом в хрящевой ткани. Множественные формы CD44 образуются при альтернативном сплайсинге транскриптов одного гена, хотя функциональные различия между этими изоформами остаются неясными.

CD44 существует в виде гомодимеров, которые экспрессируются во многих типах клеток или в виде гетеродимеров с ErbВ, тирозинкиназой, которая экспрессируется на эпителиальных клетках.

Цитоплазматический участок CD44 обладает несколькими функциями. Он необходим для правильного связывания с ГК и для сортинга рецепторов на клеточной поверхности. Он также участвует в процессах внутриклеточной передачи сигнала. Картирование функциональных областей в цитоплазматическом участке CD44 проводилось при изучении экспрессии мутантных форм CD44 в культуре клеток, и активации сигнальных путей после прикрепления клеток к ГК.

Из этих исследований мы знаем, что гомодимеры CD44 и гетеродимеры CD44/ErbB активируют нерецепторные тирозинкиназы, например Src, а также представителей семейства небольших G-белков, Ras. Эти киназы активируют такие сигнальные белки, как протеинкиназа С, МАР киназа и ядерные факторы транскрипции.

Наряду с этим, как показано на рисунке ниже, сигналы, передающиеся с участием CD44 , могут изменять сборку актинового цитоскелета у поверхности клеток. Это происходит при активации таких белков, связывающих актин, как фодрин и небольшого G-белка, Rac-1. Одним из последствий реорганизации актина является стимуляция миграции клеток под влиянием связывания CD44 с ГК. В опухолях усиление экспрессии CD44 и секреции ГК коррелирует с увеличением ее агрессивности, и является плохим прогностическим признаком.

Обычно считается, что гиалуроновая кислота (ГК ) играет двоякую роль в стимуляции миграции клеток. Во-первых, за счет связывания с внеклеточным матриксом ГК нарушает межклеточные взаимодействия и взаимодействие клеток с матриксом. Мыши, у которых не происходит экспрессии ГК, характеризуются незначительной величиной межклеточного пространства, вследствие чего животные не могут развиваться нормально. Поскольку ГК обладает большим гидратированным объемом, повышенная секреция ГК в опухоли нарушает целостность внеклеточного матрикса, что приводит к образованию больших промежутков, через которые могут мигрировать опухолевые клетки.

Во-вторых, при связывании ГК с рецепторами CD44 могут активироваться внутриклеточные процессы передачи сигналов, непосредственно приводящие к перегруппировкам цитоскелета и к активации миграции клеток. Это подтверждается данными, полученными в экспериментах по добавлению ГК к клеткам в культуре. Клетки, экспрессирующие CD44, начинают мигрировать сразу же после контакта с ГК, и соединения, разрушающие внутриклеточные сигнальные молекулы и связывающиеся с CD44, ингибируют эту миграцию.

Молекулярная формула: (C14H21NO11)n
Растворимость в воде: растворим (натриевая соль)
LD50:
2400 мг / кг (мыши, пероральное введение, натриевая соль)
4000 мг / кг (мыши, подкожное введение, натриевая соль)
1500 мг / кг (мыши, внутрибрюшное введение, натриевая соль)
Связанные соединения: D-глюкуроновая кислота и DN-ацетилглюкозамина (мономеры)
Гиалуроновая кислота (гиалуронат или ГК) является анионным, не сульфатированным гликозаминогликаном, широко распространяется в соединительной, эпителиальной и нервной ткани. Является уникальным среди гликозаминогликанов соединением, поскольку представляет собой не сульфатированную форму, формируется в плазматической мембране, а не в Гольджи, и может достигать очень больших размеров, с молекулярной массой, часто достигающей миллионов. Являясь одним из основных компонентов внеклеточного матрикса, гиалуроновая кислота в значительной степени способствует пролиферации и миграции клеток, а также может быть вовлечена в развитие некоторых злокачественных опухолей. В среднем, у человека с весом 70 кг (154 фунтов) содержится в организме около 15 граммов гиалуроновой кислоты, одна треть из которой восполняется (деградирует и синтезируется) каждый день. Гиалуроновая кислота является также составной частью стрептококковой группы А внеклеточной капсулы А, и, как полагают, играет важную роль в вирулентности (степени патогенности микроорганизма).

Медицинское применение

Гиалуроновая кислота иногда используется для лечения остеоартрита коленного сустава в виде препарата для инъекций в сустав. Эффективность гиалуроновой кислоты при таком применении, однако, не была доказана, и такое использование может быть связано потенциально с серьезными побочными эффектами. Такие симптомы, как сухая, чешуйчатая кожиа (ксероз), вызванные, например, атопическим дерматитом (экземой), могут лечиться с использованием лосьона для кожи, содержащего гиалуронат натрия в качестве активного ингредиента. При некоторых видах рака, уровни гиалуронана коррелируют со злокачественностью и плохим прогнозом. Гиалуроновая кислота, таким образом, часто используется в качестве опухолевого маркера для определения рака предстательной железы и рака молочной железы. Вещество также может использоваться для мониторинга прогрессирования заболевания. Гиалуроновая кислота также может быть использована в послеоперационном периоде для заживления тканей, особенно после хирургии катаракты. Современные модели заживления ран предлагают использовать более крупные полимеры гиалуроновой кислоты на ранних стадиях заживления, что позволит физически освободить место для белых кровяных клеток, опосредующих иммунный ответ. Гиалуроновая кислота также используется в синтезе биологических каркасов для заживления ран. Эти каркасы, как правило, содержат белки, такие как фибронектин, прикрепленные к гиалуроновой кислоте, чтобы облегчить миграцию клеток в рану. Это особенно важно для людей, страдающих диабетом и хроническими ранами. В 2007 году EMA продлила свое одобрение на препарат Hylan GF-20 для лечения боли при остеоартрите лодыжки и предплечья.

Функции

До конца 1970-х годов, гиалуроновую кислоту считали «вязкой» молекулой, распространенным углеводным полимером и частью внеклеточного матрикса. Гиалуроновая кислота является основным компонентом синовиальной жидкости, которое повышает вязкость жидкости. Наряду с лубрицином, гиалуроновая кислота является одним из основных смазочных компонентов жидкости. Гиалуроновая кислота является важным компонентом суставного хряща, где она служит покрытием вокруг каждой ячейки (хондроцитов). Когда аггрекановые мономеры связываются с гиалуроновой кислотой в присутствии белка, образуются большие, высоко отрицательно заряженные агрегаты. Эти агрегаты впитывают воду и отвечают за упругость хряща (его устойчивость к компрессии). Молекулярная масса (размер) гиалуроновой кислоты в хряще уменьшается с возрастом, но при этом ее количество увеличивается. Гиалуроновая кислота является также основным компонентом кожи и участвует в процессах восстановления тканей. Когда кожа подвергается чрезмерному воздействию ультрафиолетовых лучей спектра B, она становится воспаленной (образуются солнечные ожоги), и клетки в дерме прекращают производство большого количества гиалуроновой кислоты, и увеличивают скорость ее деградации. После ультрафиолетового облучения, продукты деградации гиалуроновой кислоты накапливаются в коже. Присутствуя в изобилии во внеклеточной матрице, гиалуроновая кислота также воздействует на гидродинамику ткани, движение и пролиферацию клеток, а также участвует в ряде взаимодействий рецепторов клеточной поверхности, в том числе основных рецепторов, CD44 и RHAMM. Стимуляция CD44 широко применяется в качестве маркера активации клеток в лимфоцитах. Воздействие Гиалуронана на рост опухоли может быть связано с его взаимодействием с CD44. Рецептор CD44 участвует во взаимодействиях клеточной адгезии, опосредованной с опухолевыми клетками. Несмотря на то, что гиалуроновая кислота связывается с рецептором CD44, есть свидетельства того, что продукты деградации ГК преобразуют их импульс воспаления через толл-подобный рецептор 2 (TLR2), TLR4 или через оба рецептора TLR2 и TLR4 в макрофаги и дендритные клетки. Толл-подобный рецептор и гиалуроновая кислота играют важную роль в формировании врожденного иммунитета. Высокие концентрации гиалуроновой кислоты в мозге крысят, и пониженные концентрации в мозге взрослых крыс, наводят на мысль, что ГК играет важную роль в развитии мозга.

Структура

Свойства ГК впервые были установлены в 1930 году в лаборатории Карла Мейера. Гиалуроновая кислота представляет собой полимер дисахаридов, которые входят в состав D-глюкуроновой кислоты и DN-ацетилглюкозамина, связанные через чередующиеся β-1,4 и β-1,3 гликозидные связи. Гиалуроновая кислота может состоять из 25000 повторяющихся единиц дисахарида в длину. Полимеры ГК могут варьироваться в размере от 5000 до 20000 тысяч Да в естественных условиях. Средняя молекулярная масса гиалуроновой кислоты в синовиальной жидкости человека составляет 3-4 млн Да, а молекулярная масса гиалуроновой кислоты, выделенной из пуповины человека, составляет 3140000 Да. Гиалуроновая кислота является энергетически стабильным веществом, отчасти из-за стереохимии составляющих ее дисахаридов. Громоздкие группы в каждой молекуле сахара находятся на пространственно привилегированных позициях, в то время как меньшие атомы водорода занимают менее благоприятные осевые положения.

Биологический синтез

Гиалуроновая кислота синтезируется классом интегральных мембранных белков, называемых гиалуроновыми синтазами, три типа которых присутствуют у позвоночных: Has1, HAS2, и HAS3. Эти ферменты постепенно удлиняют гуалуронан, попеременно добавляя к нему N – ацетилглюкозамин и глюкуроновую кислоту, в то время пока он выталкивается через ABC-транспортер и через клеточную мембрану во внеклеточное пространство. Синтез гиалуроновой кислоты ингибируется 4-метилумбеллифероном (гимекромон, гепарвит), производной 7-гидрокси-4-метилкумарина. Это селективное ингибирование (без ингибирования других гликозаминогликанов) может оказаться полезным в предотвращении метастазирования злокачественных опухолевых клеток. Недавно была создана генетически модифицированная (ГМО) сенная палочка для получения ГК, в виде запатентованного продукта, пригодного для употребления человеком.

Клеточные рецепторы гиалуроновой кислоты

На настоящий момент, клеточные рецепторы ГК делятся на три основных группы: CD44, рецептор для ГК-опосредованной моторики (RHAMM) и молекула межклеточной адгезии -1. CD44 и ICAM-1 уже были известны как молекулы клеточной адгезии с другими признанными лигандами, до того как было открыто их связывание с ГК. Рецептор CD44 широко распространен по всему телу. Формальная демонстрация связывания ГК-CD44 была предложена Аруффо и соавторами в 1990 году. На сегодняшний день CD44 признан в качестве основного клеточного поверхностного рецептора ГК. CD44 опосредует взаимодействие клеток с ГК и связывание двух функций в качестве важной части в различных физиологических функциях, таких как агрегация, миграция, пролиферация и активация клеток; адгезия клетка-клетка и клетка-субстрат; эндоцитоз ГК, который приводит к катаболизму ГК в макрофагах и т.д. Две значимые роли CD44 в кожных процессах были выдвинуты Кая и другими. Первая заключается в регулировании пролиферации кератиноцитов в ответ на внеклеточные стимулы, а вторая – в поддержании местного гомеостаза ГК. ICAM-1 (фактор межклеточной адгезии 1) известен, главным образом, как метаболический рецептор клеточной поверхности ГК, этот белок может отвечать в основном за клиренс ГК из лимфы и плазмы крови, на его долю приходится, возможно, большая часть всего метаболизма ГК в организме. Таким образом, связь лиганда данного рецептора вызывает высоко скоординированный каскад событий, который включает в себя формирование эндоцитозного пузырька, его соединение с первичными лизосомами, ферментативное расщепления до моносахаридов, активный трансмембранный перенос этих сахаров в клеточном соке, фосфорилирование аспарагиновой кислоты и ферментативное ацетилирование. ICAM-1 может также служить в качестве молекулы клеточной адгезии, связь ГК с ICAM-1 может способствовать контролю ICAM-1-опосредованной воспалительной активации.

Расщепление

Гиалуроновая кислота расщепляется семейством ферментов, называемым гиалуронидазы. В организме человека присутствует, по крайней мере, семь типов ферментов гиалуронидазы, некоторые из которых являются опухолевыми супрессорами. Продукты распада гиалуроновой кислоты, олигосахариды и ГК с очень с низким молекулярным весом, проявляют проангиогенные свойства. В дополнение к этому, недавние исследования показали, что фрагменты гиалуроновой кислоты могут вызывать воспалительные реакции макрофагов и дендритных клеток на месте поврежденной ткани и пересажанной кожи.

Действие

Заживление ран

Кожа обеспечивает механический барьер для внешней среды и действует для предотвращения проникновения инфекционных агентов. Поврежденная ткань подвержена инфицированию; поэтому, быстрое и эффективное лечение имеет решающее значение для реконструкции барьерной функции. Заживление ран на коже представляет собой сложный процесс, и включает в себя множество взаимодействующих процессов, опосредованных гемостазом и выделением тромбоцитарных факторов. Следующими этапами являются: воспаление, образование грануляционной ткани, эпителизация и реконструкция. ГК, вероятно, играет многогранную роль в ходе этих клеточных и матричных процессов. ГК, предположительно, играет роль в заживлении ран кожи.

Воспаление

Многие биологические факторы, такие как факторы роста, цитокины, эйкозаноиды и т.д., генерируются в процессе воспаления. Эти факторы являются необходимыми на последующих стадиях заживления ран, поскольку отвечают за миграцию воспалительных клеток, фибробластов и эндотелиальных клеток в месте раны. В начале воспалительной фазы процесса заживления раны, поврежденная ткань насыщена ГК. Вероятно, это является отражением повышенного синтеза ГК. ГК действует как стимулятор на ранней стадии воспаления и имеет решающее значение в процессе заживления всей поврежденной ткани. Для совершенствования клеточной инфильтрации, велись наблюдения за ГК в мышиной модели воздушного мешка (доклинические исследования; в спинной области мышей создается полость при помощи подкожного введения стерильного воздуха) воспаления, индуцированного каррагинаном/IL-1. Кабаши и его коллеги показали дозозависимое увеличение производства провоспалительных цитокинов TNF -α и IL-8 с помощью маточных фибробластов человека в концентрации ГК от 10 мкг/мл до 1 мг/мл через опосредованный CD44- механизм. Клетки эндотелия, в ответ на воспалительные цитокины, такие как TNF-α, и бактериальные липополисахариды, также синтезируют ГК, что облегчает первичную адгезию цитокин-активированных лимфоцитов, экспрессирующих виды ГК-связи CD44 при условиях ламинарного и статического потока. Интересно отметить, что ГК имеет противоположные двойные функции в воспалительном процессе. Она не только может способствовать заживлению воспаления, как указано выше, но также может вызывать умеренную воспалительную реакцию, которая может способствовать стабилизации матрицы грануляционной ткани.

Гранулирование и организация матрицы грануляционной ткани

Грануляционная ткань является перфузируемой, волокнистой соединительной тканью, которая заменяет сгусток фибрина при заживлении ран. Она, как правило, растет от основания раны и способна заполнить рану практически любых размеров. ГК присутствует в изобилии в матрице грануляционной ткани. Все разнообразие функций клеток, которое необходимо для восстановления тканей, можно приписать к богатой ГК сети. Эти функции включают в себя содействие миграции клеток в предварительной матрице раны, клеточную пролиферацию и организацию матрицы грануляционной ткани. Инициирование воспаления имеет решающее значение для формирования грануляционной ткани, поэтому провоспалительная роль ГК, как описано выше, также вносит свой вклад в эту стадию заживления ран.

ГК и миграция клеток

Миграция клеток имеет важное значение для формирования грануляционной ткани. Ранняя стадия развития грануляционной ткани опосредована богатым ГК внеклеточным матриксом, который рассматривается в качестве благоприятной среды для миграции клеток в этой временной матрице раны. Роль ГК в миграции клеток можно объяснить ее физико-химическими свойствами, как указано выше, а также ее прямым взаимодействием с клетками. Для осуществления первого сценария, ГК предоставляет собой открытую водосодержащую матрицу, которая облегчает миграцию клеток, тогда как в последнем случае, направленная миграция и контроль двигательных механизмов клетки опосредованы через специфическое взаимодействие клеток между ГК и поверхностными клеточными рецепторами ГК. Как уже говорилось ранее, тремя главными поверхностными клеточными рецепторами ГК являются CD44, RHAMM, и ICAM-1. RHAMM больше связан с клеточной миграцией. Он образует связи с несколькими протеинкиназами, связанными с клеточной локомоцией, например, внеклеточной регулируемой протеинкиназой (ERK), p125fak и pp60c-Src. Во время эмбрионального развития, путь миграции, через который мигрируют клетки нервного гребня, богат ГК. ГК тесно связана с процессом миграции клеток в матрице грануляционной ткани, исследования показывают, что движение клеток может быть перекрыто, по крайней мере, частично, деградацией ГК или путем блокирования связывания ГК с рецептором. Обеспечивая динамическую силу в клетке, синтез ГК также связан с клеточной миграцией. Как правило, ГК синтезируется в плазматической мембране и выходит непосредственно во внеклеточную среду. Это может способствовать гидратации микросреды в местах синтеза, и имеет важное значение для миграции клеток путем содействия клеточному отщеплению.

Роль ГК при регулировании воспалительного ответа

Хотя воспаление является составной частью формирования грануляционной ткани, для нормального восстановления тканей, должно процесс воспаления следует сдержать. Гранулированная ткань подвержена воспалениям, имеет высокую скорость метаболизма, опосредованного деградацией матричных ферментов и реакционноспособных метаболитов кислорода, которые являются продуктами воспалительных клеток. Стабилизация матрицы грануляционной ткани может быть достигнута путем сдерживания воспаления. ГК функционирует как важный фактор в этом процессе замедления, что противоречит ее роли в воспалительной стимуляции, как описано выше. ГК может защитить от вредного воздействия свободных радикалов на клетки. В исследованиях Фоши Д. и коллег на крысиной модели, было показало, что ГК поглощает свободные радикалы, тем самым уменьшая ущерб, нанесенный грануляционной ткани. В дополнение к роли поглощения свободных радикалов, ГК может также функционировать в отрицательной обратной петле воспалительной активации через ее специфические биологические взаимодействия с биологическими компонентами воспаления. ФНО-α, важный цитокин, генерируемый при воспалении, стимулирует экспрессию TSG-6 (ФНО-стимулирующего гена 6) в фибробластах и воспалительных клетках. TSG-6, ГК-связывающий белок, также образует стабильный комплекс с сывороточным ингибитором протеиназы IαI (Inter-α-ингибитор), оказывая синергический эффект на плазмин-ингибирующую активность последнего. Плазмин вовлечен в активацию протеолитического каскада матриксных металлопротеиназ и других белков, ведущих к воспалительному повреждению ткани. Таким образом, действие TSG-6/IαI комплексов, которые могут быть дополнительно организованны посредством связывания с ГК во внеклеточном матриксе, могут служить в качестве мощной петли отрицательной обратной связи при умеренном воспалении и стабилизировать грануляционную ткань, по мере того как заживление будет прогрессировать. В мышиной модели воздушного мешка при воспалении, индуцированном каррагенаном/ИЛ-1 (интерлейкином-1β), где ГК проявляла противовоспалительные свойства, уменьшение воспаления могло быть достигнуто путем введения TSG-6. Результат при этом сопоставим с системной терапией дексаметазоном.

Реэпителизация

ГК играет важную роль в нормализации эпидермиса. ГК имеет важные функции в процессе реэпителизации, за счет нескольких своих свойств. Она служит в качестве неотъемлемой части внеклеточного матрикса базальных кератиноцитов, которые являются основными составляющими эпидермиса; ГК служит для «очищения» кожи от свободных радикалов и играет роль в пролиферации и миграции кератиноцитов. В нормальной коже, ГК в относительных высоких концентрациях содержится в базальном слое эпидермиса, где находятся пролиферирующие кератиноциты. CD44 соединяется с ГК в базальном слое эпидермиса, где он экспрессируется на плазме мембраны, сталкиваясь с богатыми ГК матричными мешочками. Основными функциями ГК в эпидермисе являются поддержание внеклеточного пространства и обеспечение открытой и гидратированной структуры для прохождения питательных веществ. Тамми П. и другие его коллеги обнаружили увеличение содержания ГК при наличии ретиноевой кислоты (витамина А). Предлагаемые эффекты ретиноевой кислоты в отношении фото-повреждения и старения кожи могут быть связаны, по крайней мере, частично, с увеличением содержание ГК в коже, порождая увеличение гидратации ткани. Было высказано предположение, что свойство ГК по удалению свободных радикалов способствует защите от солнечного излучения, поддерживает роль CD44 в качестве рецептора ГК в эпидермисе. Эпидермальная ГК также функционирует в качестве манипулятора в процессе пролиферации кератиноцитов, что очень важно для нормального функционирования эпидермиса, а также во время эпителизации при восстановлении тканей. В процессе заживления ран, ГК экспрессируется по краям раны, в матрице соединительной ткани. Кая и соавторы показали, что подавление экспрессии CD44 с помощью определенного трансгена, приводит в результате у животных к дефициту ГК и различным морфологическим изменениям базальных кератиноцитов и неправильному распространению кератиноцитов в ответ на митоген и факторы роста. Наблюдалось также снижение эластичности кожи, нарушение местной воспалительной реакции и нарушения репарации тканей. Их наблюдения поддерживают важную роль ГК и CD44 в физиологии кожи и восстановлении тканей.

Эмбриональное заживление ран и рубцов

Отсутствие волокнистых рубцов является основным признаком заживления ран у плода. Даже в течение более длительных периодов, содержание ГК в ранах плода выше, чем в ранах у взрослых, что позволяет предположить, что ГК, по крайней мере, частично, снижает отложение коллагена и поэтому приводит к снижению образования рубцов. Это предположение согласуется с исследованиями Веста и др., которые показали, что изъятие ГК у взрослых и у плода на поздних сроках беременности вызывает появление фиброзных рубцов.

Роль в метастазировании

Синтазы гиалуроновой кислоты (ГКС) играют роль во всех стадиях раковых метастазов. При производстве анти-адгезионной ГК, ГКС может позволить опухолевым клеткам освободиться от первичной опухолевой массы, и если ГК связывается с рецепторами, такими как CD44, активация ГТФазы может способствовать эпителиальным-мезенхимальным переходам (ЭМП) раковых клеток. Во время процессов интровазации или экстравазации, взаимодействие ГКС, производящих ГК рецепторы, такие как CD44 и RHAMM, провоцирует изменения в клетках, которые позволяют раковым клеткам проникать в кровеносную или лимфатическую системы. Во время передвижения в этих системах, ГК, производимая ГКС, защищает раковые клетки от механических повреждений. Наконец, в формировании метастатических поражений, ГКС производит ГК, чтобы позволить раковым клеткам взаимодействовать с родными клетками на вторичном узле, и производить опухоль. Гиалуронидазы (HAase или HYAL) также играют множество ролей в формировании раковых метастаз. Помогая разрушать внеклеточный матрикс, окружающий опухоль, гиалуронидазы помогают раковым клеткам уходить от первичной массы опухоли и играют важную роль в интровазии, позволяя осуществлять распад базальной лимфатической мембраны или кровеносного сосуда. Гиалуронидазы участвуют в создании метастатического поражения, способствуя экстравазации и очищая внеклеточный матрикс. Наконец, гиалуронидазы играют ключевую роль в процессе ангиогенеза. Фрагменты ГК стимулируют ангиогенез и гиалуронидазы, производящие эти фрагменты. Интересно, что гипоксия также увеличивает производство ГК и активность гиулоронидазов. Рецепторы гиалуроновой кислоты, CD44 и RHAMM, наиболее хорошо изучены с точки зрения их роли в раковом метастазировании. Повышенная экспрессия CD44 клинически положительно коррелирует с метастазами в ряде типов опухолей. CD44 влияет на адгезию опухолевых клеток друг к другу и к эндотелиальным клеткам, перестраивает цитоскелет через Rho ГТФазу, и увеличивает активность разрушающих ферментов внеклеточного матрикса. Повышенная экспрессия RHAMM также клинически коррелировала с метастазами рака. С точки зрения механики, RHAMM способствует подвижности раковых клеток через ряд путей, включая фокальную киназу адгезии (ФАК), МАР-киназу (МАРК), PP60 (с-SRC), и ГТФазы. Рецептор ГК-индуцированной подвижности может также взаимодействовать с CD44, стимулируя ангиогенез в сторону метастатического поражения.

Инъекции гиалуроновой кислоты

Гиалуроновая кислота является распространенным ингредиентом в продуктах по уходу за кожей. До недавнего времени, наполнители гиалуроновой кислоты вводили, используя классическую острую иглу для подкожных инъекций. Игла проходила через нервы и сосуды, вызывая боль и синяки. В 2009 году была разработана новая техника, с помощью которой кожа прокалывается острой иглой, а затем микроскопическая полая игла скользит под кожей, не прокалывая ее глубже.

Добавки в коневодстве

Гиалуроновая кислота используется для лечения суставных заболеваний у лошадей, в особенности во время соревнований или тяжелой работы. ГК предписывается при запястной и скакательной дисфункции, при отсутствии подозрений на сепсис или перелом. Часто используется при синовите, связанном с остеоартритом у лошадей. Вещество может вводиться непосредственно в пораженный сустав, или внутривенно при менее локализованных нарушениях. Может вызывать слабое нагревание связок при прямом введении, но не влияет на клинические результаты. При внутрисуставном введении, лекарство полностью метаболизируется, менее чем за неделю. Обратите внимание, что, в соответствии с канадским регулированием, гиалуроновая кислота, HY-50, не должна вводиться животным, предназначенным на убой. В Европе, однако, не считают, что этот препарат оказывает какой-либо эффект и влияет на вкусовые качества конины.

Этимология

Гиалуроновая кислота извлекается из гилоса (от греч. «стекловидное тело») и уроновой кислоты, так как она была впервые выделена из стекловидного тела и обладает высоким содержанием уроновой кислоты. Термин «гиалуронат» относится к сопряженной основе гиалуроновой кислоты. Поскольку молекула, как правило, присутствует в естественных условиях в полианионном виде, ее обычно называют гиалуроновой кислотой.

История

Гиалуроновая кислота содержится во многих тканях организма, таких как кожа, хрящи и стекловидное тело. Поэтому она хорошо подходит в качестве дополнения биомедицинских добавок, ориентированных на эти ткани. Первый биомедицинский продукт из ГК, Геалон, был разработан в 1970-х и 1980-х гг. компаний Pharmacia, и предназначался для использования в хирургии глаза (а именно, при пересадке роговицы, хирургии катаракты, глаукомы, и операциях по восстановлению отслоенной сетчатки). Другие биомедицинские компании также производят марки ГК для использования в глазной хирургии. Исходный гиалуронан имеет относительно короткий период полураспада (что было показано в опытах на кроликах), поэтому для увеличения длины цепи и стабилизации молекулы для ее использования в медицинских целях были разработаны различные технологии производства. Использовались такие методы, как внедрение перекрестных связей на основе белка, внедрение молекул, поглощающих свободные радикалы, таких как сорбит, и минимальная стабилизация цепей ГК с помощью химических агентов, например, стабилизированная гиалуроновая кислота неживотного происхождения. В конце 1970-х, интраокулярная имплантация линз часто сопровождалась тяжелым отеком роговицы, за счет повреждения эндотелия клеток во время операции. Было очевидно, что необходима вязкая, прозрачная, физиологическая смазка для предотвращения такого соскоба из эндотелиальных клеток.

Исследования

Благодаря своей высокой биосовместимости и присутствию во внеклеточном матриксе тканей, гиалуроновая кислота становится популярной в качестве биоматериала в исследованиях тканевой инженерии. В частности, ряд научно-исследовательских групп обнаружили особые свойства гиалуроновой кислоты в области тканевой инженерии. Эта дополнительная функция позволяет исследователям сформировать требуемую форму, а также воспроизвести терапевтические молекулы. Гиалуроновая кислота может быть создана путем присоединения тиолов (торговое название: Extracel, HyStem), метакрилатов, гексадисиломидов (торговое название: Hymovis), и тираминов (торговое название: Corgel). Гиалуроновая кислота также может быть создана нарямую из формальдегида (торговое название: Hylan-A) или из дивинилсульфона (торговое название: Hylan-B). Благодаря своей способности регулировать ангиогенез путем стимулирования пролиферации эндотелиальных клеток, гиалуроновая кислота может быть использована для создания гидрогелей для изучения морфогенеза сосудов. Эти гидрогели имеют свойства, подобные человеческим мягким тканям, но также легко контролируются и изменяются, что делает ГК очень подходящим веществом для исследований в области тканевой инженерии. Например, гидрогели ГК применяются для воспроизводства сосудистой сети из эндотелиальных клеток-предшественников с использованием соответствующих факторов роста, таких как VEGF и Ang-1, чтобы способствовать пролиферации и образованию сосудистой сети. В этих гелях имеется вакуоль (небольшая полость) и образование просвета, сопровождаемые разветвлением и прорастанием через деградацию гидрогеля и, в конечном счете, образующие конструкцию сложной сети. Способность генерировать сосудистые сети, используя гидрогели ГК, приводит к возможности клинического применения ГК. В исследовании в естественных условиях, когда гидрогель ГК с эндотелиальными колониеобразующими клетками были имплантированы мышам через три дня после формирования гидрогеля, воспроизведенная сосудистая сеть прижилась в течение 2 недель после имплантации. Это указывает на жизнеспособность и функциональность сосудистой сети.

Гиалуроновая кислота купить

Гиалуроновая кислота является достаточно важным компонентом, который входит в состав соединительной ткани, а также содержится в биологических жидкостях (в частности - синовиальной) и производится гиалуронат-синтетазами (класс мембранных белков). Гиалуроновая кислота является трансдермальной системой доставки многих других активных компонентов, необходимых для здоровья кожи лица. На рынке существует масса препаратов, содержащих в качестве компонента гиалуроновую кислоту, и применяемых в косметологии и медицине.

Сегодня упоминаниями о гиалуроновой кислоте пестрят как глянцевые издания, так и страницы обычных СМИ. Последние несколько лет нам не перестают твердить, что «секрет вечной молодости кожи раскрыт» и предлагают воспользоваться этим «эликсиром». Давайте попробуем разобраться, чего же в этом нездоровом ажиотаже больше – правдивой информации, точного коммерческого расчёта или банальных обывательских заблуждений.

Открытия прошлого, не оправдавшие надежд

Если заглянуть в совсем недавнее прошлое, то можно вспомнить, что аналогичные ситуации уже были в истории медицины:

  • Открытие пенициллина преподносилось, как полная победа над микроорганизмами (чего, к огромному сожалению, не произошло, несмотря на теперешний спектр ).
  • Выпускаемому инсулину пророчили победу над (препарат для диабетиков жизненно важный и крайне необходимый, но до полной победы над диабетом еще очень далеко).
  • Использование первых нейролептиков преподносилось, как возможность излечения от определенных расстройств психики, но и тут все далеко от идеальных ожиданий.

В общем, истинная картина по прошествии некоторого времени всё-таки отличается от прогнозов и первоначальных оценок. Поэтому очень важно относиться ко всему критично и максимально объективно.

Развенчиваем мифы о гиалуроновой кислоте

Никто из медиков не будет спорить, что гиалуроновая кислота важна для организма человека, но то множество информации, которое сегодня можно встретить в СМИ и которое выдаётся за истину, увы, приходит к нам не от профессионалов. Чаще всего новаторские мысли в народ несут различного рода бьюти-эксперты, блоггеры-самоучки и другие люди без профильного – медицинского, фармацевтического или биологического образования. Они высказываются о медицинском препарате на основании собственных оценочных впечатлений, информации из сомнительных источников или информации, вырванной из контекста

Так рождаются заблуждения. Давайте попробуем отделить зерна от плевел и разобраться в этом вопросе более детально.

Истина

Главное заблуждение в том, что препарат называют в единственном числе, а правильно называть во множественном – кислоты, так как это одно из соединений группы кислых мукополисахаридов, куда входят и другие соединения аналогичного состава и свойств, причем масса их может колебаться в широких пределах. Так как подавляющее большинство препаратов, выходящих под названием «гиалуроновая кислота» производится из биологического сырья без специального разделения фракций, то и считать препарат именно одним, чистым, соединением совсем некорректно.

Гиалуроновая кислота – результат открытий бьюти-лабораторий последний двух-трех десятилетий.

Само вещество было открыто еще в 1930 году и изучением её свойств, функций, а также возможностями применения занялись практически сразу после открытия. Сами исследования не прекращались, а начиная с 70-х годов прошлого века их интенсивность стала нарастать.

Данное вещество используется в косметической и косметологической продукции

Помимо этого развитого направления гиалуроновая кислота применяется при различных заболеваниях других органов и систем в качестве лекарственного средства.

В косметологических средствах улучшает проникновение полезных веществ внутрь кожи

Не влияет на уровень клеточной и межклеточной проницаемости для различных веществ

Старение кожи связано с потерей жидкости из-за уменьшения уровня веществ этой группы во всех слоях кожи

Если снижение содержания гиалуронатов и происходит с возрастом, то не столь значительно, а старение, в том числе и кожи, – сложнейший многогранный общебиологический процесс и сводить его проявления к столь банальным причинам – просто глупо

Правда о гиалуроновой кислоте

Все свойства и характеристики и отличительные особенности гиалуроновой кислоты подробно описываются в научной и медицинской литературе. Однако она пересыщена множеством терминов, что делает имеющуюся информацию не всегда понятной для простого обывателя.

Если попытаться все несколько упростить – получается что:


Для каждой из фракций присущ свой набор свойств и характеристик. Так низкомолекулярные разновидности вещества обладают прекрасным противовоспалительным действием, что обеспечило их применение при ожогах, трофических язвах, герпетических высыпаниях, псориазе. Среднемолекулярная гиалуроновая кислота способна подавлять размножение клеток и их миграции. Благодаря этим свойствам её задействуют при лечении некоторых артритов и болезней глаз. Высокомолекулярные фракции удерживают вокруг себя огромное количество молекул воды и стимулируют клеточные процессы в самой коже. Эта разновидность гиалуроновой кислоты нашла своё применение в хирургии, офтальмологии и косметологии

Важно знать! Использовать препарат с неуказанной величиной молекул действующего вещества категорически нельзя, так как можно не только не добиться желаемого результата, но и ухудшить состояние.

Основные показания к применению гиалуроновой кислоты

Всегда следует помнить, что введение в организм препаратов гиалуроновой кислоты инъекционно является в первую очередь медицинской манипуляцией. Для использования различных методик и проведения процедур имеются достаточно строгие медицинские критерии.

Так, основными показаниями к применению гиалуроновой кислоты являются:

  • появление морщин (снижение тургора кожи) вследствие потери влаги;
  • увеличение выраженности имеющихся морщин;
  • выраженные мимические морщины;
  • необходимость нормализации рельефа кожи;
  • необходимость улучшения тургора и контура красной каймы губ.

Препараты гиалуроновой кислоты в эстетической медицине

В современной косметологии восстребованность гиалуроновой кислоты в виде уколов или других форм препарата объясняется:


Современный фармакологический рынок предлагает гиалуроновую кислоту в виде инъекций. При этом она может быть в виде:

  • Мезококтейля , включающего в себя основное вещество, дополненное пантенолом, витаминами, коэнзимами, факторами клеточного роста, пептидами и пр. веществами
  • Филлеров – дермального наполнителя из сшитой ГК, который со временем биодеградирует – рассасывается в организме. Выпускается в виде геля различной степени вязкости. Чем более вязкое вещество, тем с большими проблемами оно призвано справиться.
  • Редермализантов и биоревитализантов . В настоящее время на прилавках аптек можно найти 3 поколения этих препаратов. В основе последних – нуклеиновые кислоты, создающие с ГК комплексы, способные восстанавливать ДНК клеток и ускорять выработку собственной гиалуроновой кислоты, а также эластина и коллагена.
  • Биорепарантов – препаратов, содержащих измененную ГК, к цепи которой прикреплены пептиды, витамины, аминокислоты. Они обладают пролонгированным и усиленным действием.

Обратите внимание: в индустрии красоты могут быть задействованы мази, кремы, гели, лосьоны для наружного применения, но их эффективность гораздо ниже эффективности гиалуроновой кислоты для инъекций.

Основные типы процедур для улучшения состояния кожи лица

Наиболее востребованнымиинъекционными процедурами с гиалуроновой кислотой стали:


Основные противопоказания к применению гиалуроновой кислоты

Если маркетологи пытаются вас уверить в том, что уколы гиалуроновой кислоты, куда бы они не осуществлялись, максимально безопасны, знайте: это ложь! На фоне определенных процедур они действительно безопаснее, однако и у этого препарата есть собственные противопоказания.

В числу основных относятся:

  1. Любые аллергические реакции на действующее вещество или его компоненты.
  2. Любые инфекционные заболевания в остром периоде.
  3. Беременность, роды и последующая лактация.
  4. Патология соединительной ткани.
  5. Общие и системные заболевания, такие как аутоиммунные поражения, онкологическая патология любых органов и систем, сахарный , патология свертывающей системы крови.

Ко всему, в месте инъекций не должны располагаться , родимые пятна, родинки, шрамы и воспалительные процессы. При несоблюдении этих противопоказаний результаты могут быть плачевными.

Эффективность кремов с гиалуроновой кислотой

Отдельную группу препаратов, причем достаточно распространенных, составляют кремы с гиалуроновой кислотой. Их применяют путем нанесения на поверхность кожи, где они и производят непосредственный эффект.

Для поверхностных изменений, защиты кожи используются средства, содержащие высокомолекулярные фракции, которые создают защитный слой и не проникают внутрь кожи.

Для корректировки глубоких, возрастных изменений лучше подходят средства с низкомолекулярными фракциями действующего вещества, так как оно частично может проникать на определенную глубину во внутренние слои, где и осуществляется их биологическое действие.

Всё большую популярность в последнее время приобретают безинъекционные методики, подразумевающие нанесение геля на кожу с последующим воздействием микротоков, лазера, ультразвука.

Хочется закончить советом: для всего есть свое время и свои причины, а основное правило здоровой жизни, отличного настроения и прекрасной внешности – это умеренность. В погоне за красотой старайтесь использовать даже такое средство, как гиалуроновая кислота, без излишеств, и ваша кожа будет выглядеть хорошо даже в глубокой старости.

Более подробную информацию о применении препаратов гиалуроновой кислоты для лица вы получите, посмотрев видео-обзор:

Совинская Елена Николаевна, терапевт.